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1 Problems Studied

The objective of the project is to extend the PI’s work on nonsmooth nonlinear equations
from applications to solvers and temporal integration to into nonsmooth nonlinear least
squares problems. The motivating application is calibration of models for both groundwater
and surface water flow. A secondary objective is for the PI to continue his work on solvers
and preconditioners for unsaturated flow and non-Darcy models of saturated flow.

The research is part of a collaboration with a group at the Coastal and Hydraulics
Laboratory (CHL) at the US Army Engineer Research and Development Center (ERDC) on
Adaptive Hydrology model (ADH), a production groundwater modeling code, will be used
as both a large-scale testbed for the algorithmic work in the project and as a source for new
research topics. The work done by the PI and his students has had a direct impact on the
evolution of ADH and we expect that the proposed program of basic research will have an
impact on the future of the code. Our collaborators at ERDC include Charlie Berger, Owen
Eslinger, Matthew Farthing, Jackie Pettway, Stacy Howington, and Chris Kees.

The project has partially supported three students. Jill Reese received her degree in
2006 and is now employed at the Mathworks. Corey Winton should defend his thesis in
early 2010 and formally graduate in May 2010. Winton is now employed at the Information
Technology Laboratory at ERDC. Anna Meade is a new student and was supported by this
project through May of 2010. she will be supported for the 2010–2011 academic year directly
by ERDC though their BAA.
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2 Results

We have published a paper [4] which compares several methods for optimal design of reme-
diation strategies. This effort was supported by this project and the previous ARO funding.

Most of our efforts were directed at reduced order models for inverse problems in saturated
flow. Such problems are a good first step to test ideas, enable us to integrate the optimization
with ADH, and may lead to other applications, such as thermal inverse problems.

The computational cost of an ADH field-scale simulation in three dimensions is high,
and it is important to reduce the number of expensive calls to the simulator. This is one
of the reasons why the group at ERDC is not using methods like genetic algorithms or
simulated annealing for calibration. Methods based on nonlinear least squares, however,
miss the global features of the problem, and may converge to local minima that result in
poor calibrations. One low cost approach to remedy this is to use a surrogate model or
response surface to approximate the expensive objective function, minimize the surrogate
with a global optimization method, and then sample the expensive function near one or more
local minima of the surrogate.

We are using a POD (principal orthogonal decomposition) surrogate model [6, 8, 14, 16]
which is a reduced order model used in the fluids control community. POD uses a basis which
is built from several runs of the simulator, extracting a useful low-dimensional subspace with
an eigenvalue calculation. We use a basis taken from the sensitivity vectors, which can be
computed efficiently within finite element simulators like ADH. The student involved in this
part of the project is Corey Winton, who is now employed at ERDC. Winton has been
integrating the POD ideas directly into ADH, and we have attached a report by Winton (see
§ 2.1) on the details. The major advance in the last twelve months is the integration of a
well model into the POD formulation. Winton should complete his Ph. D. work by the end
of 2010. He has some significant, but manageable, computing left to do.

Our results to date are promising [12, 13] but we must have the results which use the
well model before publishing in a journal. The well model is required because the problems
of interest at ERDC have integrated flux boundary conditions, and the well model maps
those boundary conditions into pressure boundary conditions. § 2.1 will explain the issues
in detail.

Once the well model is in hand, we have publications (including Winton’s thesis) prepared
and waiting for it, as well as a collaboration with Farthing to create a hybrid method that
uses the POD approximation with the genetic algorithm from [2] in the global phase, and
with PEST [3] when the iteration is near convergence. While genetic algorithms are based
on heuristics, there are methods to couple reduced order models and heuristic algorithms
with rigorous optimization methods to obtain convergence results [1]. Hence, we expect the
methods we design to have rigorous convergence properties.
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2.1 Report by Corey Winton

In the past year, we have continued our application of Proper Orthogonal Decomposition
(POD) on groundwater models. Our goal is to generate a reduced model using POD that
will allow us to estimate the parameters that govern groundwater flow. The parameters
we are most concerned with are hydraulic conductivity, the measure of velocity of a liquid
through a porous medium.

This year, our progress has focused on the development and implementation of the total
flux boundary condition. In previous years, we had solved

∇ · (K∇h) = f in Γ (1a)

∂h

∂n
= 0 on ∂Γ1 (1b)

h = g on ∂Γ2 (1c)

We now seek to solve the following equation:

∇ · (K∇h) = f in Γ, (2)

but with the boundary condition

Γ = ΓD ∪ ΓN ∪ ΓQ, (3)

where

ΓD = Γd1
∪ ... ∪ ΓdNd

, (4a)

ΓN = Γn1
∪ ... ∪ ΓnNn

, (4b)

ΓQ = Γq1
∪ ... ∪ ΓqNq

, (4c)

and

Γdi
⇒ h = αdi

on Γdi
, (5a)

Γni
⇒ ∂h

∂n
= βni

on Γni
, (5b)

Γqi
⇒

∫

Γqi

∂h
∂n

dS = φqi
on Γqi

. (5c)

The solution to (2) is given by

h = h0 +
∑

Nq

γihi, (6)

where h0 and hi are solutions to (2) boundary conditions modified as follows:

• To solve for h0, we leave ΓD and ΓN as defined in (4), (5), but force h = 0 on ΓQ
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• To compute hi, we set h = 0 on ΓD,
∂h

∂n
= 0 on ΓN , and h = 1 on ΓQ

• The Nq coefficients γi are derived from the following system of Nq equations:

∫

Γqj

∂h0

∂n
dS +

Nq
∑

i=1

γi

∫

Γqj

∂hqi

∂n
dS = φqj

, j = 1...Nq. (7)

For the reduced model, we compute the solutions hi in (6) with

(

A0 +
n

∑

i

Aiki

)

h∗ = f ∗

0
+

n
∑

i

fiki. (8)

That is, the only information that changes for each sub-solution hi is contained in the vector
f0. The matrix A is constructed directly by our full model ADH. The vectors f are derived,
but with minimal computational effort.

The total flux formulation with solution (6) serves several purposes:

• The total flux boundary on ΓQ ensures a unique solution to (2)

• We have more information in our basis. Previously, the basis U was constructed with

U =

[

h,
∂h

∂k1

, . . . ,
∂h

∂kn

]

,

where ki are the individual material conductivities found in K. Now, we have consid-
erably more information and can build the basis

U =

[

h0,
∂h0

∂k1

, . . . ,
∂h0

∂kn

, h1,
∂h1

∂k1

, . . . ,
∂h1

∂kn

, . . . , hNq
,
∂hNq

∂k1

, . . . ,
∂hNq

∂kn

]

.

The expansion of the basis is significant as it this will allow the reduced order model
to more accurately portray the physics of the full model.

• We are able to analytically compute the gradient for (6) with minimal additional effort.
We see from (6) that

∂h

∂kj

=
∂h0

∂kj

+
∑

Nq

(

γi

∂hi

∂kj

+
∂γi

∂kj

hi

)

(9)

We see from (8) that
∂h∗

∂ki

is given by

A
∂h∗

∂ki

= fi − Aih∗. (10)
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We can find
∂γ∗

∂ki

from (7)

∫

Γqj

∂
(

∂h0

∂kk

)

∂n
dS +

Nq
∑

i=1



γi

∫

Γqj

∂
(

∂hqi

∂kk

)

∂n
dS +

∂γi

∂kk

∫

Γqj

∂hqi

∂n
dS



 = φqj
, j = 1...Nq

(11)
Each the terms in (11) are straightforward to solve. We construct a matrix M that
allows us to compute the flux through any boundary Γj for a given solution hi. That
is,

Mhi =

∫

Γj

∂hi

∂n
dS.

This matrix M does not change as we alter the boundary conditions, so it need only
be constructed once.

It should be noted that the development and implementation of the total flux boundary
condition is of interest not only in our optimization research, but also in the full ADH code.
This boundary condition also serves as a useful well model for other applications. Rather
than present the well as a prescribed flux through a set of elements, we can now solve for
the accumulated flux through that boundary. The distinction is key – rather than assigning
a flux at each element to simulate a well, we are now able to solve for the aggregate flux
through that boundary.

Future Work We intend to use the reduced order model constructed by POD to pursue
several optimization goals.

• First, we intend to show that an optimizer using POD will find at least a comparable
local solution with less computational effort than if the optimizer used the full model
in ADH.

• We aim to use POD with a Genetic Algorithm (GA) maintained by Matthew Farthing
to find a global solution with less computational effort. A GA requires a large number of
model simulations. We will demonstrate that the reduced model constructed by POD
will allow the GA to investigate a large domain with significantly less computational
effort than possible if it used the full model.

2.2 Other Research Efforts

We continue to collaborate with ERDC staff on multilevel solvers (Kees) grid optimization
(Eslinger), and maintain discussions on temporal integration (Berger, Howington, Kees).
We have recently published some theoretical studies on the method of pseudo-transient
continuation [5,11,15,17], which we have helped put into ADH. We have also done theoretical
work on nonlinear least squares [7, 10], which will have applications to our work on model
calibration. The PI is also completing a book [9] on the implicit filtering algorithm, which
we have been using for design of remediation systems [4].
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3 Technology Transfer and Collaborations with ERDC

ERDC personnel use the work of the PI’s group in many ways. Berger has used the work on
pseudo-transient continuation in his surface water work. Our temporal integration code is
now completely integrated into ADH, as is our work on preconditioning. We also work with
Eslinger on optimization methods for mesh improvement.

Over the term of the project, Winton spent 8–12 weeks at ERDC in the summers of
2008 and 2009. Kelley visited ERDC at least twice each year of the project. Eslinger and
Howington visited the PI at NC State University once each. The PI served on Hallberg’s
Ph. D. committee.
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